Sufficiency Criteria for a Class of -Valent Analytic Functions of Complex Order

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficiency Criteria for a Class of p-Valent Analytic Functions of Complex Order

and Applied Analysis 3 Proof. Let p(z) be given by (11), which clearly belongs to the class A(n). Now differentiating (11), we have p 󸀠 (z) = ( f (z) ∗ g (z) z ) 1/(p+b−1) × 1 p + b − 1 { z(f (z) ∗ g (z)) 󸀠 f (z) ∗ g (z) + b − 1} (20) which gives 󵄨󵄨󵄨󵄨 arg p (z)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 arg( f (z) ∗ g (z) z ) 1/(p+b−1) + arg{ 1 p+b−1 ( z(f (z) ∗ g (z)) 󸀠 f (z) ∗ g (z) +b−1)} 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (21) Thus using (...

متن کامل

Sufficient Conditions for a New Class of Polynomial Analytic Functions of Reciprocal Order alpha

In this paper, we consider a new class of analytic functions in the unit disk using polynomials of order alpha. We give some sufficient conditions for functions belonging to this class.

متن کامل

On Certain Sufficiency Criteria for p-Valent Meromorphic Spiralike Functions

and Applied Analysis 3 2. Some Properties of the Classes ∑∗ λ p, n, α and ∑λ c p, n, α Theorem 2.1. If f z ∈ ∑ p, n satisfies ∣ ∣ ∣ ∣ ( zf z )eiλ/ p−α cosλ { e zf ′ z f z α cosλ ip sinλ } ( p − α cosλ ∣ ∣ ∣ ∣ < n √ n2 1 ( p − α cosλ z ∈ U , 2.1 then f z ∈ ∑∗λ p, n, α . Proof. Let us set a function h z by h z 1 z ( zf z )eiλ/ p−α cosλ 1 z ean ( p − α cosλ n · · · 2.2 for f z ∈ ∑ p, n . Then clea...

متن کامل

sufficient conditions for a new class of polynomial analytic functions of reciprocal order alpha

in this paper, we consider a new class of analytic functions in the unit disk using polynomials of order alpha. we give some sufficient conditions for functions belonging to this class.

متن کامل

Analytic Functions Involving Complex Order

and Applied Analysis 3 Definition 1.1 Hadamard product or convolution . For functions f and g in the class A, where f z of the form 1.1 and g z is given by g z z ∞ ∑ k 2 ckz , 1.8 the Hadamard product or convolution f ∗ g z is defined by ( f ∗ g z z ∞ ∑ k 2 akbkz k ( g ∗ f z , z ∈ U. 1.9 Definition 1.2 subordination principle . For analytic functions g and hwith g 0 h 0 , g is said to be subord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2013

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2013/517296